Astronomy
Asteroids and Comets Black Holes Children Chemical Elements Constellations Earth Eclipses Environment Equations Evolution Exoplanets Galaxies Light Matter Moons Nebulas Planets Dwarf Planets Probes and Telescopes Scientists Stars Sun Universe Volcanoes Zodiac New Articles Glossary
RSS astronoo
Follow me on X
Follow me on Bluesky
Follow me on Pinterest
English
Français
Español
Português
日本語
Deutsch
 
Last update: August 29, 2025

How Are Electrons Distributed in an Atom?

How Are Electrons Distributed in an Atom?

Electron Shells: K, L, M, N, O, P, Q Notation

Origin and Principle

To describe the distribution of electrons around the atomic nucleus, physicists use a simple historical notation: the electron shells K, L, M, N, O, P, and Q. This notation was introduced in the early 20th century by physicist Charles Barkla (1877-1944) during the study of X-rays. This notation allows for a quick visualization of how electrons are distributed by increasing energy levels, from the shell closest to the nucleus (K) to the outer shells.

Correspondence with Modern Notation

Each letter corresponds to a principal quantum number n:
K Shell: n = 1 (first shell, closest to the nucleus)
L Shell: n = 2 (second shell)
M Shell: n = 3 (third shell)
N Shell: n = 4 (fourth shell)
O Shell: n = 5 (fifth shell)
P Shell: n = 6 (sixth shell)
Q Shell: n = 7 (seventh shell)

Maximum Capacity of Shells

Each shell can contain a maximum number of electrons defined by the formula 2n²:
K Shell (n=1): maximum 2 electrons (2 × 1² = 2)
L Shell (n=2): maximum 8 electrons (2 × 2² = 8)
M Shell (n=3): maximum 18 electrons (2 × 3² = 18)
N Shell (n=4): maximum 32 electrons (2 × 4² = 32) → Uranium reaches this: K(2) L(8) M(18) N(32)
O Shell (n=5): maximum 50 electrons (2 × 5² = 50) → Never reached (uranium has only 21 electrons in O)
P Shell (n=6): maximum 72 electrons (2 × 6² = 72) → Never reached
Q Shell (n=7): maximum 98 electrons (2 × 7² = 98) → Never reached

N.B.:
In practice, no known element completely fills the shells beyond N. The heaviest natural element, uranium (Z=92), has the configuration K(2) L(8) M(18) N(32) O(21) P(9) Q(2). The heaviest confirmed synthetic element, oganesson (Z=118), has the configuration K(2) L(8) M(18) N(32) O(32) P(18) Q(8).

Internal Structure of Shells: Subshells

Each shell is divided into subshells designated by the letters s, p, d, f:
s Subshell: can contain up to 2 electrons (1 orbital)
p Subshell: can contain up to 6 electrons (3 orbitals)
d Subshell: can contain up to 10 electrons (5 orbitals)
f Subshell: can contain up to 14 electrons (7 orbitals)

K Shell (n=1): contains only 1s (2 electrons max)
L Shell (n=2): contains 2s and 2p (2 + 6 = 8 electrons max)
M Shell (n=3): contains 3s, 3p, and 3d (2 + 6 + 10 = 18 electrons max)
N Shell (n=4): contains 4s, 4p, 4d, and 4f (2 + 6 + 10 + 14 = 32 electrons max)
O Shell (n=5): contains 5s, 5p, 5d, and 5f (2 + 6 + 10 + 14 = 32 electrons max theoretical, although the theoretical 5g subshell does not exist in known elements)
P Shell (n=6): contains 6s, 6p, 6d, and 6f (2 + 6 + 10 + 14 = 32 electrons max for known subshells)
Q Shell (n=7): contains 7s, 7p, and potentially 7d (only 7s and 7p electrons are observed in known elements)

Simplified Notation K(x) L(y) M(z) N(t)

This notation indicates the total number of electrons present in each shell, without detailing the subshells. It is particularly useful for quickly visualizing the overall electronic distribution of an atom.

Examples of Elements

Helium (2 electrons): 1s² → K(2)
The K shell is complete and saturated.
Neon (10 electrons): 1s² 2s² 2p⁶ → K(2) L(8)
The K and L shells are complete and saturated.
Sodium (11 electrons): 1s² 2s² 2p⁶ 3s¹ → K(2) L(8) M(1)
The K and L shells are complete, the M shell contains only 1 electron out of 18 possible.
Argon (18 electrons): 1s² 2s² 2p⁶ 3s² 3p⁶ → K(2) L(8) M(8)
The K and L shells are complete. The M shell contains 8 electrons but is not complete (the 3s and 3p subshells are saturated, but 3d remains empty).
Calcium (20 electrons): 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² → K(2) L(8) M(8) N(2)
Note that the 4s subshell fills before the 3d, which is why the M shell remains at 8 electrons.
Titanium (22 electrons): 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s² → K(2) L(8) M(10) N(2)
The M shell begins to fill with 3d electrons.

Order of Filling Shells

The filling order does not strictly follow the order of K, L, M, N shells... due to the energy levels of the subshells. The general order is:
1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → 4f → 5d → 6p → 7s → 5f → 6d...

This principle explains why, for example, potassium (19 electrons) has the configuration K(2) L(8) M(8) N(1): the 19th electron goes into 4s rather than 3d because the 4s subshell is of lower energy than 3d.

Importance of This Notation

The K, L, M, N, O, P, Q notation allows:
• Quick visualization of the overall electronic structure of an atom
• Easy identification of the valence shell (outer shell)
• Understanding of chemical properties related to valence electrons
• Explanation of the classification of elements in the periodic table
• Prediction of oxidation states and chemical reactivity of elements

Examples:

Electronic Structure and Chemical Affinities of Elements

The chemical reactivity of elements originates from their electronic structure, particularly the configuration of their valence shell. The outer shell, or valence shell, determines an element's ability to form chemical bonds: atoms tend to gain, lose, or share electrons to achieve a stable configuration, usually that of the nearest noble gas.

This tendency explains the observed chemical affinities: alkali metals, with a single valence electron, readily give it up to form cations; halogens, which lack one electron to complete their outer shell, are electron-hungry and form anions; while noble gases, with a complete valence shell, remain chemically inert. Between these extremes, transition elements and metalloids exhibit intermediate behaviors, forming various types of bonds depending on conditions.

Understanding these structure-property relationships is the foundation of modern chemistry and allows the prediction of element behavior in chemical reactions.

Valence shell, valence electrons, and chemical affinity of chemical elements (H → U)
ElementSymbol (Z)Valence shellValence electronsValence configurationAffinity with other elements (examples)
HydrogenH (Z = 1)n = 111s¹Covalent bonds with O (H₂O), C (CH₄), N (NH₃).
HeliumHe (Z = 2)n = 121s²Almost no chemical affinity; inert noble gas.
LithiumLi (Z = 3)n = 212s¹Ionic bonds with F (LiF), O (Li₂O).
BerylliumBe (Z = 4)n = 222s²Covalent bonds with O (BeO), C (Be₂C).
BoronB (Z = 5)n = 232s² 2p¹Deficient bonds with F (BF₃), H (boranes).
CarbonC (Z = 6)n = 242s² 2p²Covalent bonds with H, O (CO₂), N.
NitrogenN (Z = 7)n = 252s² 2p³Multiple bonds with H (NH₃), C (CN⁻).
OxygenO (Z = 8)n = 262s² 2p⁴Major oxidant; bonds with H, C, metals.
FluorineF (Z = 9)n = 272s² 2p⁵Very high electronegativity; ionic bonds.
NeonNe (Z = 10)n = 282s² 2p⁶Inert noble gas.
SodiumNa (Z = 11)n = 313s¹Ionic bonds with Cl (NaCl), O.
MagnesiumMg (Z = 12)n = 323s²Ionic bonds with O (MgO).
AluminumAl (Z = 13)n = 333s² 3p¹Metallic and covalent bonds (Al₂O₃).
SiliconSi (Z = 14)n = 343s² 3p²Covalent networks (SiO₂).
PhosphorusP (Z = 15)n = 353s² 3p³Bonds with O (PO₄³⁻), H.
SulfurS (Z = 16)n = 363s² 3p⁴Bonds with H (H₂S), O (SO₂).
ChlorineCl (Z = 17)n = 373s² 3p⁵Ionic bonds with Na, covalent with H.
ArgonAr (Z = 18)n = 383s² 3p⁶Inert noble gas.
PotassiumK (Z = 19)n = 414s¹Ionic bonds with Cl (KCl), O.
CalciumCa (Z = 20)n = 424s²Ionic bonds with O (CaO), carbonates.
ScandiumSc (Z = 21)n = 434s² 3d¹Metallic bonds; oxides Sc₂O₃.
TitaniumTi (Z = 22)n = 444s² 3d²Metallic bonds; oxides TiO₂.
VanadiumV (Z = 23)n = 454s² 3d³Multiple oxidation states; V₂O₅.
ChromiumCr (Z = 24)n = 464s¹ 3d⁵Metallic bonds; oxides Cr₂O₃.
ManganeseMn (Z = 25)n = 474s² 3d⁵Varied oxidation states; MnO₂.
IronFe (Z = 26)n = 42–34s² 3d⁶Metallic bonds; oxides Fe₂O₃.
CobaltCo (Z = 27)n = 42–34s² 3d⁷Metallic bonds; complexes CoO.
NickelNi (Z = 28)n = 424s² 3d⁸Metallic bonds; catalyst NiO.
CopperCu (Z = 29)n = 41–24s¹ 3d¹⁰Metallic bonds; oxides CuO.
ZincZn (Z = 30)n = 424s² 3d¹⁰Ionic bonds with O, S.
GalliumGa (Z = 31)n = 434s² 4p¹Metallic bonds; semiconductors GaAs.
GermaniumGe (Z = 32)n = 444s² 4p²Semiconductor; covalent bonds GeO₂.
ArsenicAs (Z = 33)n = 454s² 4p³Covalent bonds with S, O.
SeleniumSe (Z = 34)n = 464s² 4p⁴Analogous to sulfur; H₂Se.
BromineBr (Z = 35)n = 474s² 4p⁵Halogen; bonds with H, metals.
KryptonKr (Z = 36)n = 484s² 4p⁶Almost inert noble gas.
RubidiumRb (Z = 37)n = 515s¹Alkali metal; ionic bonds RbCl.
StrontiumSr (Z = 38)n = 525s²Ionic bonds with O (SrO).
YttriumY (Z = 39)n = 535s² 4d¹Transition metal; Y₂O₃.
ZirconiumZr (Z = 40)n = 545s² 4d²Metallic bonds; ZrO₂.
NiobiumNb (Z = 41)n = 555s¹ 4d⁴Superconductor; Nb₂O₅.
MolybdenumMo (Z = 42)n = 565s¹ 4d⁵Metallic bonds; MoS₂.
TechnetiumTc (Z = 43)n = 575s² 4d⁵Radioactive; complexes with O.
RutheniumRu (Z = 44)n = 585s¹ 4d⁷Catalyst; RuO₂.
RhodiumRh (Z = 45)n = 595s¹ 4d⁸Catalyst; Rh₂O₃.
PalladiumPd (Z = 46)n = 5104d¹⁰Catalyst; PdO.
SilverAg (Z = 47)n = 515s¹ 4d¹⁰Metallic bonds; Ag₂O.
CadmiumCd (Z = 48)n = 525s² 4d¹⁰Ionic bonds; CdS.
IndiumIn (Z = 49)n = 535s² 5p¹Semiconductor; In₂O₃.
TinSn (Z = 50)n = 545s² 5p²Metallic bonds; SnO₂.
AntimonySb (Z = 51)n = 555s² 5p³Semimetal; Sb₂O₃.
TelluriumTe (Z = 52)n = 565s² 5p⁴Semimetal; H₂Te.
IodineI (Z = 53)n = 575s² 5p⁵Halogen; bonds with H, metals.
XenonXe (Z = 54)n = 585s² 5p⁶Noble gas; compounds with F (XeF₄).
CesiumCs (Z = 55)n = 616s¹Highly reactive alkali metal; CsCl.
BariumBa (Z = 56)n = 626s²Ionic bonds; BaO.
LanthanumLa (Z = 57)n = 636s² 5d¹Lanthanide; La₂O₃.
CeriumCe (Z = 58)n = 63–46s² 4f¹ 5d¹Lanthanide; CeO₂.
PraseodymiumPr (Z = 59)n = 636s² 4f³Lanthanide; Pr₂O₃.
NeodymiumNd (Z = 60)n = 636s² 4f⁴Powerful magnets; Nd₂O₃.
PromethiumPm (Z = 61)n = 636s² 4f⁵Radioactive; Pm₂O₃.
SamariumSm (Z = 62)n = 62–36s² 4f⁶Magnets; Sm₂O₃.
EuropiumEu (Z = 63)n = 62–36s² 4f⁷Phosphor; Eu₂O₃.
GadoliniumGd (Z = 64)n = 636s² 4f⁷ 5d¹Magnetic; Gd₂O₃.
TerbiumTb (Z = 65)n = 636s² 4f⁹Phosphor; Tb₂O₃.
DysprosiumDy (Z = 66)n = 636s² 4f¹⁰Magnets; Dy₂O₃.
HolmiumHo (Z = 67)n = 636s² 4f¹¹Magnetic; Ho₂O₃.
ErbiumEr (Z = 68)n = 636s² 4f¹²Optical; Er₂O₃.
ThuliumTm (Z = 69)n = 636s² 4f¹³Lasers; Tm₂O₃.
YtterbiumYb (Z = 70)n = 62–36s² 4f¹⁴Yb₂O₃.
LutetiumLu (Z = 71)n = 636s² 4f¹⁴ 5d¹Lu₂O₃.
HafniumHf (Z = 72)n = 646s² 4f¹⁴ 5d²Metallic bonds; HfO₂.
TantalumTa (Z = 73)n = 656s² 4f¹⁴ 5d³Resistant; Ta₂O₅.
TungstenW (Z = 74)n = 666s² 4f¹⁴ 5d⁴High melting point; WO₃.
RheniumRe (Z = 75)n = 676s² 4f¹⁴ 5d⁵Catalyst; Re₂O₇.
OsmiumOs (Z = 76)n = 686s² 4f¹⁴ 5d⁶Very dense; OsO₄.
IridiumIr (Z = 77)n = 696s² 4f¹⁴ 5d⁷Resistant; IrO₂.
PlatinumPt (Z = 78)n = 6106s¹ 4f¹⁴ 5d⁹Catalyst; PtO₂.
GoldAu (Z = 79)n = 616s¹ 4f¹⁴ 5d¹⁰Noble; Au₂O₃.
MercuryHg (Z = 80)n = 626s² 4f¹⁴ 5d¹⁰Liquid; HgO.
ThalliumTl (Z = 81)n = 636s² 6p¹Toxic; Tl₂O.
LeadPb (Z = 82)n = 646s² 6p²Metallic bonds; PbO.
BismuthBi (Z = 83)n = 656s² 6p³Semimetal; Bi₂O₃.
PoloniumPo (Z = 84)n = 666s² 6p⁴Radioactive; PoO₂.
AstatineAt (Z = 85)n = 676s² 6p⁵Radioactive; rare halogen.
RadonRn (Z = 86)n = 686s² 6p⁶Radioactive noble gas.
FranciumFr (Z = 87)n = 717s¹Radioactive; alkali metal.
RadiumRa (Z = 88)n = 727s²Radioactive; RaO.
ActiniumAc (Z = 89)n = 737s² 6d¹Actinide; Ac₂O₃.
ThoriumTh (Z = 90)n = 747s² 6d²Actinide; ThO₂.
ProtactiniumPa (Z = 91)n = 757s² 5f² 6d¹Radioactive; Pa₂O₅.
UraniumU (Z = 92)n = 73–67s² 6d¹ 5f³Complex bonds with O (UO₂²⁺), F (UF₆).

Articles on the same theme

The Atom in All Its Forms: From Ancient Intuition to Quantum Mechanics The Atom in All Its Forms: From Ancient Intuition to Quantum Mechanics
How Are Electrons Distributed in an Atom?
How Are Electrons Distributed in an Atom?
Half-Life of Nuclides: Implications for Radioactivity and Chronology
Half-Life of Nuclides: Implications for Radioactivity and Chronology
Periodic Table of Chemical Elements - History and Organization
Periodic Table of Chemical Elements - History and Organization
Why does life depend so much on oxygen?
Why does life depend so much on oxygen?
Hydrogen: The Key to Cosmic Creation
Hydrogen (H, Z = 1): The Key to Cosmic Creation
Helium: A Relic of the Big Bang and Stellar Actor
Helium (He, Z = 2): A Relic of the Big Bang and Stellar Actor
Lithium: The Key Element of Modern Batteries
Lithium (Li, Z = 3): The Key Element of Modern Batteries
Beryllium: A Rare Metal with Exceptional Properties
Beryllium (Be, Z = 4): A Rare Metal with Exceptional Properties
Boron: A Key Element in Materials Science
Boron (B, Z = 5): A Key Element in Materials Science
Carbon: The Element of Life
Carbon (C, Z = 6): The Element of Life
Nitrogen: The Abundant and Inert Element in the Atmosphere
Nitrogen (N, Z = 7): The Abundant and Inert Element in the Atmosphere
Oxygen: The Element at the Heart of Life
Oxygen (O, Z = 8): The Element at the Heart of Life
Fluorine (F, Z = 9): The Reactive and Essential Chemical Element
Fluorine (F, Z = 9): The Reactive and Essential Chemical Element
Neon (Ne, Z = 10): The Noble Element of Rare Gases
Neon (Ne, Z = 10): The Noble Element of Rare Gases
Sodium (Na, Z = 11): The Reactive and Versatile Element
Sodium (Na, Z = 11): The Reactive and Versatile Element
Magnesium (Mg, Z = 12): The Essential Element for Biology and Industry
Magnesium (Mg, Z = 12): The Essential Element for Biology and Industry
Aluminum (Al, Z = 13): The Light and Versatile Element
Aluminum (Al, Z = 13): The Light and Versatile Element
Silicon (Si, Z = 14): The Key Element of Earth and Modern Technologies
Silicon (Si, Z = 14): The Key Element of Earth and Modern Technologies
Phosphorus (P, Z = 15): A Fundamental Element for Life
Phosphorus (P, Z = 15): A Fundamental Element for Life
Sulfur (S, Z = 16): The Essential Element for Life and Industry
Sulfur (S, Z = 16): The Essential Element for Life and Industry
Chlorine (Cl, Z = 17): The Key Element in the Chemical Industry and Disinfection
Chlorine (Cl, Z = 17): The Key Element in the Chemical Industry and Disinfection
Argon (Ar, Z = 18): The Noble Element of the Atmosphere
Argon (Ar, Z = 18): The Noble Element of the Atmosphere
Potassium (K, Z = 19): From Fire on Water to the Beating of the Heart
Potassium (K, Z = 19): From Fire on Water to the Beating of the Heart
Calcium (Ca, Z = 20): Architect of Bones and Sculptor of Mountains
Calcium (Ca, Z = 20): Architect of Bones and Sculptor of Mountains
Scandium (Sc, Z = 21): The Triumph of Scientific Prediction
Scandium (Sc, Z = 21): The Triumph of Scientific Prediction
Titanium (Ti, Z = 22): A Light Metal with Extraordinary Properties
Titanium (Ti, Z = 22): A Light Metal with Extraordinary Properties
Vanadium (V, Z = 23): A Strategic Metal with Multiple Facets
Vanadium (V, Z = 23): A Strategic Metal with Multiple Facets
Chromium (Cr, Z = 24): A Brilliant Metal with Remarkable Properties
Chromium (Cr, Z = 24): A Brilliant Metal with Remarkable Properties
Manganese (Mn, Z = 25): A Transition Metal with Multiple Facets
Manganese (Mn, Z = 25): A Transition Metal with Multiple Facets
Iron (Fe, Z = 26): The Metallic Pillar of Our Civilization
Iron (Fe, Z = 26): The Metallic Pillar of Our Civilization
Cobalt (Co, Z = 27): A Magnetic Metal with Strategic Properties
Cobalt (Co, Z = 27): A Magnetic Metal with Strategic Properties
Nickel (Ni, Z = 28): A Resistant Metal with Magnetic Properties
Nickel (Ni, Z = 28): A Resistant Metal with Magnetic Properties
Copper (Z=29): A Conductive Metal with Remarkable Properties
Copper (Z=29): A Conductive Metal with Remarkable Properties
Zinc (Zn, Z = 30): A Protective Metal with Essential Properties
Zinc (Zn, Z = 30): A Protective Metal with Essential Properties
Gallium (Ga, Z = 31): The Metal with Extraordinary Physical Properties
Gallium (Ga, Z = 31): The Metal with Extraordinary Physical Properties
Germanium (Ge, Z = 32): The Metalloid That Pioneered the Electronic Age
Germanium (Ge, Z = 32): The Metalloid That Pioneered the Electronic Age
Arsenic (As, Z = 33): The Metalloid with Two Faces
Arsenic (As, Z = 33): The Metalloid with Two Faces
Selenium (Se, Z = 34): The Essential Photoelectric Element
Selenium (Se, Z = 34): The Essential Photoelectric Element
Bromine (Br, Z = 35): The Liquid Halogen with Toxic Vapors
Bromine (Br, Z = 35): The Liquid Halogen with Toxic Vapors
Krypton (Kr, Z = 36): The Noble Gas with Spectral Lights
Krypton (Kr, Z = 36): The Noble Gas with Spectral Lights
Rubidium (Rb, Z = 37): The Alkali Metal of Atomic Clocks
Rubidium (Rb, Z = 37): The Alkali Metal of Atomic Clocks
Strontium (Sr, Z = 38): The Metal of Red Fireworks
Strontium (Sr, Z = 38): The Metal of Red Fireworks
Yttrium (Y, Z = 39): A Rare Earth with Revolutionary Technological Applications
Yttrium (Y, Z = 39): A Rare Earth with Revolutionary Technological Applications
Zirconium (Zr, Z = 40): The Ultra-Resistant Metal of Nuclear Reactors
Zirconium (Zr, Z = 40): The Ultra-Resistant Metal of Nuclear Reactors
Niobium (Nb, Z = 41): The Superconductor of CERN and Modern Steels
Niobium (Nb, Z = 41): The Superconductor of CERN and Modern Steels
Molybdenum (Mo, Z = 42): The Essential Metal for High-Performance Steels
Molybdenum (Mo, Z = 42): The Essential Metal for High-Performance Steels
Technetium (Tc, Z = 43): The First Entirely Artificial Element
Technetium (Tc, Z = 43): The First Entirely Artificial Element
Ruthenium (Ru, Z = 44): The Precious Metal of Advanced Technologies
Ruthenium (Ru, Z = 44): The Precious Metal of Advanced Technologies
Rhodium (Rh, Z = 45): The Most Precious Metal in the World
Rhodium (Rh, Z = 45): The Most Precious Metal in the World
Palladium (Pd, Z = 46): The Hydrogen Sponge of Green Technologies
Palladium (Pd, Z = 46): The Hydrogen Sponge of Green Technologies
Silver (Ag, Z = 47): The Millennial Metal with Record Conductivity
Silver (Ag, Z = 47): The Millennial Metal with Record Conductivity
Cadmium (Cd, Z = 48): The Controversial Metal of Ni-Cd Batteries
Cadmium (Cd, Z = 48): The Controversial Metal of Ni-Cd Batteries
Indium (In, Z = 49): The Invisible Element of Modern Screens
Indium (In, Z = 49): The Invisible Element of Modern Screens
Tin (Sn, Z = 50): The Ancestral Metal of the Bronze Age
Tin (Sn, Z = 50): The Ancestral Metal of the Bronze Age
Antimony (Sb, Z = 51): The Overlooked Strategic Metalloid
Antimony (Sb, Z = 51): The Overlooked Strategic Metalloid
Tellurium (Te, Z = 52): The Rare Metalloid of Renewable Energies
Tellurium (Te, Z = 52): The Rare Metalloid of Renewable Energies
Iodine (I, Z = 53): The Violet Halogen Essential for Life
Iodine (I, Z = 53): The Violet Halogen Essential for Life
Xenon (Xe, Z = 54): The Rare Noble Gas with Exceptional Properties
Xenon (Xe, Z = 54): The Rare Noble Gas with Exceptional Properties
Cesium (Cs, Z = 55): The Most Reactive Metal and Keeper of Time
Cesium (Cs, Z = 55): The Most Reactive Metal and Keeper of Time
Barium (Ba, Z = 56): The Heavy Metal of Medical Imaging
Barium (Ba, Z = 56): The Heavy Metal of Medical Imaging
Lanthanum (La, Z = 57): The Standard-Bearer of Rare Earths
Lanthanum (La, Z = 57): The Standard-Bearer of Rare Earths
Cerium (Ce, Z = 58): The Paradoxically Abundant Rare Earth
Cerium (Ce, Z = 58): The Paradoxically Abundant Rare Earth
Praseodymium (Pr, Z = 59): The Green Rare Earth
Praseodymium (Pr, Z = 59): The Green Rare Earth
Neodymium (Nd, Z = 60): The King of Permanent Magnets
Neodymium (Nd, Z = 60): The King of Permanent Magnets
Promethium (Pm, Z = 61): The Phantom Rare Earth
Promethium (Pm, Z = 61): The Phantom Rare Earth
Samarium (Sm, Z = 62): A Terrestrial Magnet with Stellar Origins
Samarium (Sm, Z = 62): A Terrestrial Magnet with Stellar Origins
Europium (Eu, Z = 63): The Red Luminescent Phosphor
Europium (Eu, Z = 63): The Red Luminescent Phosphor
Gadolinium (Gd, Z = 64): The Magnetic Atom of Medical Imaging
Gadolinium (Gd, Z = 64): The Magnetic Atom of Medical Imaging
Terbium (Tb, Z = 65): The Green Luminescent and Magnetic Atom
Terbium (Tb, Z = 65): The Green Luminescent and Magnetic Atom
Dysprosium (Dy, Z = 66): The Magnetic Atom of Green Energy
Dysprosium (Dy, Z = 66): The Magnetic Atom of Green Energy
Holmium (Ho, Z = 67): The Magnetic Atom of Medical Lasers
Holmium (Ho, Z = 67): The Magnetic Atom of Medical Lasers
Erbium (Er, Z = 68): The Fundamental Dopant of Fiber Optic Networks
Erbium (Er, Z = 68): The Fundamental Dopant of Fiber Optic Networks
Thulium (Tm, Z = 69): The Atom of Laser Light and X-Rays
Thulium (Tm, Z = 69): The Atom of Laser Light and X-Rays
Ytterbium (Yb, Z = 70): The Atom of Time and Laser Light
Ytterbium (Yb, Z = 70): The Atom of Time and Laser Light
Lutetium (Lu, Z = 71): The Ultimate Rare Earth Gem
Lutetium (Lu, Z = 71): The Ultimate Rare Earth Gem
Hafnium (Hf, Z = 72): The Atom of Nuclear Reactors and Microprocessors
Hafnium (Hf, Z = 72): The Atom of Nuclear Reactors and Microprocessors
Tantalum (Ta, Z = 73): The Metal of Life and High Technology
Tantalum (Ta, Z = 73): The Metal of Life and High Technology
Tungsten (W, Z = 74): The Metal that Defies Fire
Tungsten (W, Z = 74): The Metal that Defies Fire
Rhenium (Re, Z = 75): The Metal of Records and High Technology
Rhenium (Re, Z = 75): The Metal of Records and High Technology
Osmium (Os, Z = 76): The Metal of Extreme Density and Hardness
Osmium (Os, Z = 76): The Metal of Extreme Density and Hardness
Iridium (Ir, Z = 77): Witness to Celestial Cataclysms
Iridium (Ir, Z = 77): Witness to Celestial Cataclysms
Platinum (Pt, Z = 78): The Unalterable King of Precious Metals
Platinum (Pt, Z = 78): The Unalterable King of Precious Metals
Gold (Au, Z = 79): The Metal of Eternity and Wealth
Gold (Au, Z = 79): The Metal of Eternity and Wealth
Mercury (Hg, Z = 80): The Liquid and Toxic Metal
Mercury (Hg, Z = 80): The Liquid and Toxic Metal
Thallium (Tl, Z = 81): The Perfect Poison and the Element of Shadows
Thallium (Tl, Z = 81): The Perfect Poison and the Element of Shadows
Lead (Pb, Z = 82): The Heavy Metal of Civilization and Toxicity
Lead (Pb, Z = 82): The Heavy Metal of Civilization and Toxicity
Bismuth (Bi, Z = 83): The Heavy and Colorful Metal for Medical Applications
Bismuth (Bi, Z = 83): The Heavy and Colorful Metal for Medical Applications
Polonium (Po, Z = 84): The Element of Radioactivity and Danger
Polonium (Po, Z = 84): The Element of Radioactivity and Danger
Astatine (At, Z = 85): The Phantom of the Periodic Table
Astatine (At, Z = 85): The Phantom of the Periodic Table

Radon (Rn, Z = 86): The Domestic Radioactive Gas

Francium (Fr, Z = 87): The Elusive Alkali

Radium (Ra, Z = 88): The Element That Glowed in the Dark

Actinium (Ac, Z = 89): A Key Element of the Actinide Series

Thorium (Th, Z = 90): An Abundant Nuclear Energy Source

Protactinium (Pa, Z = 91): The Intermediate and Fleeting Element

Uranium (U, Z = 92): The Element with Contained Energy