イリジウムは、II型超新星や中性子星の合体などの破局的な出来事におけるr過程(急速中性子捕獲)によってほぼ排他的に合成される重元素です。鉄親和性元素(鉄と親和性が高い)として、地球の惑星分化の際に鉄核に大量に取り込まれたため、地殻中での存在量は極めて希少です。原始的なコンドライト隕石中での存在量ははるかに高く、地球外物質の優れたトレーサーとなっています。
1980年、ルイス・アルバレスとウォルター・アルバレスのチームが、世界中の白亜紀-古第三紀(K-Pg、6600万年前)境界で異常にイリジウムに富む粘土層を発見したことは、地質学に革命をもたらしました。この異常は、通常の地殻中の含有量の100倍にも達し、地球上の過程では説明できませんでした。これは、恐竜(および生物種の75%)の絶滅が直径約10 kmの小惑星の衝突によって引き起こされたという仮説の最初の強力な証拠となりました。対応するクレーターは後にメキシコのチクシュルーブで特定されました。
この発見以来、イリジウムの異常は、地質層中の主要な隕石衝突のマーカーとして系統的に探索されてきました。これにより、三畳紀-ジュラ紀境界など、他の絶滅や生物的攪乱の出来事が特定されてきました。イリジウムは、地球の歴史と天文現象を結びつけるための重要な元素となっています。
イリジウムには、\(^{191}\mathrm{Ir}\)と\(^{193}\mathrm{Ir}\)の2つの天然安定同位体があります。イリジウムの同位体比は、オスミウム、白金、ルテニウムなどの他の鉄親和性元素の同位体比と組み合わせることで、地球外物質の起源(例えば、コンドライト隕石と分化隕石の区別)を区別し、惑星集積過程をよりよく理解することができます。
イリジウムは、ギリシャ神話の虹の女神イリス(Ἶρις)にちなんで名付けられました。この名前は、1803年に発見者スミスソン・テナントによって、その塩類が溶液中で示す多彩な鮮やかな色にちなんで選ばれました。オスミウムが同時に発見され、その臭いにちなんで名付けられたのに対し、イリジウムはその色彩美が称えられました。
オスミウムと同様、イリジウムは1803年にイギリスの化学者スミスソン・テナントによって発見されました。王水に天然白金を溶かした際の黒色不溶残渣を研究している際、2つの新元素を分離することに成功しました。一つは揮発性の強い臭いのある酸化物(オスミウム)を生じ、もう一つは顕著な色の塩を生じました。後者をイリジウムと名付けました。溶融や加工の難しさから、「頑固な金属」という異名も持ちました。
比較的純粋なイリジウム金属の最初の生産は、1804年にテナントによって行われましたが、1842年にフランスの化学者アンリ・サンクレール・ドビルが初めて大量に得て、その特性を研究することができました。非常に高い融点と極端な硬さのため、電気アーク炉や粉末冶金技術が20世紀に登場するまで、工業的な加工は非常に困難でした。
イリジウムは地殻中で最も希少な元素の一つで、存在量はわずか0.001 ppb(10億分の1)と推定され、金の約40倍も希少です。この希少性は、鉄親和性によるものです。他の白金族元素と同様、イリジウムの一次鉱床は存在しません。常に、ニッケルや銅の精錬(ノリリスクの硫化鉱床など)や、主に白金鉱石の処理(世界のイリジウムの大部分を供給する南アフリカのブッシュフェルト鉱床)の副産物として回収されます。
世界の年間生産量は非常に少なく、数トン程度です。主な生産国は南アフリカ、ロシア、カナダ、ジンバブエです。その価格は極めて高く、変動が激しく、しばしば金よりも高価で、希少性、採掘の複雑さ、ハイテク分野でのニッチな需要を反映しています。
イリジウム(記号Ir、原子番号77)は、第6周期の遷移金属で、周期表の9族(旧VIII族)に位置し、コバルト、ロジウム、マイトネリウムとともに分類されます。白金族金属(白金、パラジウム、ロジウム、ルテニウム、オスミウム、イリジウム)に属します。その原子は77個の陽子、通常115または116個の中性子(同位体\(^{193}\mathrm{Ir}\)と\(^{191}\mathrm{Ir}\))、および77個の電子を持ち、電子配置は[Xe] 4f¹⁴ 5d⁷ 6s²で、5d軌道に7個の電子があります。
イリジウムは銀白色で光沢のある、非常に密度が高く、極めて硬く、脆い金属です。オスミウムとともに最も密度の高い元素です。
イリジウムは室温で面心立方構造(FCC)の結晶構造を持ちます。
イリジウムは2466 °C(2739 K)で融解し、4428 °C(4701 K)で沸騰します。極端な温度でも優れた機械的・化学的安定性を保つため、最も過酷な用途に適した材料です。
イリジウムは最も耐食性の高い金属です。室温では、すべての酸(王水を含む)に侵されません。高温高圧の王水によってゆっくりと侵されることがあります。融解アルカリにも耐性があります。主な化学的弱点は、600 °C以上で表面が酸化してIrO₂を形成することですが、これは安定で保護的です。この伝説的な不活性は、永久に純度を保つ必要のある標準や用途に最適です。
密度:22.56 g/cm³ - 最も高い部類(オスミウムと同等)。
融点:2739 K(2466 °C) - 極めて高い。
沸点:4701 K(4428 °C)。
結晶構造:面心立方構造(FCC)。
弾性率:約528 GPa - 極めて剛性が高い。
硬度:モース硬度6.5。
耐食性:すべての金属中で最も高い。
| 同位体 / 記号 | 陽子 (Z) | 中性子 (N) | 原子質量 (u) | 天然存在比 | 半減期 / 安定性 | 崩壊 / 備考 |
|---|---|---|---|---|---|---|
| イリジウム-191 — \(^{191}\mathrm{Ir}\) | 77 | 114 | 190.960594 u | ≈ 37.3 % | 安定 | 安定同位体。医療用同位体 \(^{192}\mathrm{Ir}\) の生産に中性子活性化で使用される。 |
| イリジウム-193 — \(^{193}\mathrm{Ir}\) | 77 | 116 | 192.962926 u | ≈ 62.7 % | 安定 | 主要な安定同位体。測定の基準同位体。 |
| イリジウム-192 — \(^{192}\mathrm{Ir}\) (人工) | 77 | 115 | 191.962605 u | 微量(放射性生成) | 73.827 日 | β⁻およびCE放射性。放射線治療(小線源治療)および工業用ガンマグラフィー(非破壊検査)に重要な同位体。\(^{191}\mathrm{Ir}\) の中性子照射によって生産される。 |
注記:
電子殻: 原子核の周りの電子の配置。
イリジウムは77個の電子を持ち、6つの電子殻に分布しています。その電子配置[Xe] 4f¹⁴ 5d⁷ 6s²は、4f軌道が完全に満たされ(14電子)、5d軌道に7電子があります。これはK(2) L(8) M(18) N(32) O(15) P(2)とも表記でき、完全には1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 4f¹⁴ 5s² 5p⁶ 5d⁷ 6s²となります。
K殻 (n=1):2電子 (1s²)。
L殻 (n=2):8電子 (2s² 2p⁶)。
M殻 (n=3):18電子 (3s² 3p⁶ 3d¹⁰)。
N殻 (n=4):32電子 (4s² 4p⁶ 4d¹⁰ 4f¹⁴)。
O殻 (n=5):15電子 (5s² 5p⁶ 5d⁷)。
P殻 (n=6):2電子 (6s²)。
イリジウムは9個の価電子を持ちます:6s²の2電子と5d⁷の7電子です。イリジウムは-3から+9までの広い酸化状態を示し、+3と+4が最も一般的で安定です。
+3状態は非常に安定で、多くの錯体(例:\(\mathrm{IrCl_6^{3-}}\))に見られます。+4状態も一般的(例:\(\mathrm{IrO_2}\), \(\mathrm{IrF_6^{2-}}\))です。注目すべきは、イリジウムは気相中の\(\mathrm{IrO_4^+}\)カチオンで+9までの非常に高い酸化状態に達することができ、これはすべての元素の中で最高記録です。この多様な酸化状態と基底金属の高い不活性は、配位化学と触媒(特にヒドロシリル化触媒や一部の有機金属触媒)において魅力的な元素となっています。
室温では、イリジウムは空気中で完全に安定です。600 °C以上で初めて顕著な酸化が始まり、安定で密着性のある酸化イリジウム(IrO₂)の層を形成し、ある程度の保護を提供します。1100 °C以上では、この酸化物層が揮発します。オスミウムとは異なり、OsO₄のような有毒な揮発性酸化物は形成しません。
イリジウムは酸に対する不屈性で有名です:
この耐性により、超腐食性物質を扱うための実験用るつぼに最適です。
注記:
王水(aqua regia)は、濃硝酸(HNO₃)と濃塩酸(HCl)を通常1:3の割合で混合した腐食性の液体です。金や白金など、単独の酸では溶けない金属を溶かす能力は、その場で塩素(Cl₂)とニトロシル塩化物(NOCl)が生成し、これらの金属を可溶性の錯イオン(例えば[AuCl₄]⁻)に酸化するためです。錬金術の時代から貴金属の精製に使用され、現在も冶金、マイクロエレクトロニクス、分析化学で重要な役割を果たしています。
イリジウムは高温でハロゲンと直接反応します。フッ素とはIrF₆(六フッ化物、黄色固体)とIrF₄を形成し、塩素とはIrCl₃(三塩化物、赤褐色固体)とIrCl₄を形成します。また、酸素と塩素と同時に反応してオキシ塩化物を形成します。硫黄、セレン、テルル、リン、ヒ素、ケイ素、ホウ素とも高温で化合物を形成します。
最も重要な酸化化合物は酸化イリジウム IrO₂です。
白金-イリジウム(90/10)合金は、19世紀末に国際メートル原器とキログラム原器の製造に選ばれました。その理由は以下の独特な性質にあります:
現在、メートルとキログラムは基本定数によって定義されていますが、古い白金-イリジウム原器は計量学の歴史的・象徴的な遺産として残っています。
純イリジウムは、チョクラルスキー法による超高融点酸化物単結晶の育成用るつぼの材料として最適です。具体的には:
その純度、非常に高い融点、化学的不活性により、育成中の結晶の汚染を防ぎます。
導電性酸化物(IrO₂ + Ta₂O₅など)でコーティングされたチタン基板上の陽極は、「寸法安定」と呼ばれます。これらは電気化学的に侵されないため、塩素アルカリ工業に革命をもたらし、汚染性のある黒鉛陽極に取って代わりました。また、水の電気分解、水処理、電気メッキにも使用されます。
人工放射性同位体\(^{192}\mathrm{Ir}\)は、中エネルギーのガンマ線源(平均エネルギー~380 keV)で、実用的な半減期は74日です。小線源治療(腫瘍内またはその近傍に放射線源を配置する放射線治療)に広く使用されています。
同じ\(^{192}\mathrm{Ir}\)線源は、非破壊検査のための工業用ラジオグラフィーに使用されます。パイプライン、圧力容器、航空機構造物、鋳物部品の溶接部の完全性を確認することができます。その透過力は、幅広い鋼板の厚さに適しています。
ニッケル基(超合金)またはイリジウム強化白金は、熱的・化学的に最も過酷な条件下で使用される部品に使用されます:
白金、パラジウム、タングステンへのイリジウムの添加は、高電力スイッチ、航空用リレー、安全装置に使用される電気接点の硬度、アーク耐性、摩耗耐性を大幅に向上させます。
金属イリジウムは、その極端な不溶性と反応性の欠如により、生物学的に不活性で毒性が低いと考えられています。塊状の金属による実質的なリスクはほとんどありません。
しかしながら:
天然のイリジウムは環境中に無限小の痕跡量で存在し、汚染物質とはなりません。イリジウムが含まれる白金族金属の採掘は、土壌攪乱や鉱山廃棄物の管理など、局所的な環境影響をもたらす可能性があります。イリジウムを使用する産業活動は、その価値と重要元素である性質から、拡散性廃棄物をほとんど生成しません。
イリジウムのリサイクルは、その法外な価格と希少性から経済的に必須です。以下から注意深く回収されます:
リサイクルプロセスは通常、選別収集、過酷な条件下での溶解(加圧加熱王水)、選択的沈殿またはイオン交換による精製を含みます。
イリジウムは、欧州連合およびアメリカ合衆国にとって重要な物質です。グリーンテクノロジー(グリーン水素用電解装置)、ハイテク、医療分野での応用により、戦略的な元素となっています。今後の課題は以下の通りです:
イリジウムは、宇宙の大変動と最も深く関わり、最先端技術の鍵となる元素であり、過去の証人であると同時に、我々の技術的未来の鍵でもあります。