
窒素は、観測可能な宇宙で5番目に豊富な元素(水素、ヘリウム、酸素、炭素に次ぐ)であり、銀河の化学進化において重要な役割を果たしています。 原始元素とは異なり、窒素は完全に恒星核合成によって生成されます。
星における窒素の主な生成経路はCNOサイクル(炭素-窒素-酸素)であり、窒素は水素からヘリウムへの融合において触媒的な中間体として現れます。 大質量星では、このサイクルがエネルギー生成を支配します。 窒素-14は主に中間質量の星(2-8太陽質量)のAGB相(漸近巨星分枝)で生成され、炭素からCNサイクルを介して合成されます。 これらの星は、強力な恒星風を通じて星間物質を窒素で豊かにします。
星間物質中では、窒素は原子状(N、N⁺)、分子状(N₂、CN、HCN、NH₃、および他の多くの複雑な窒素分子)で存在します。 窒素を含む分子は、星が形成される密度の高い分子雲における物理的および化学的条件の重要なトレーサーです。 窒素分子(N₂)は、恒久的な双極子モーメントがないため、宇宙空間で直接検出することが困難ですが、その存在量は他の窒素種を介して間接的に推定することができます。
同位体比¹⁴N/¹⁵Nは宇宙で大きく変動し、恒星における核合成および混合過程に関する貴重な情報を提供します。 隕石、彗星、惑星大気、星間物質で測定されたこの比率は、我々の銀河における物質のリサイクルの複雑な歴史を明らかにします。 太陽系の¹⁴N/¹⁵N比率は約272ですが、この比率は観測される源や天体によって大きく異なる場合があります。
惑星の大気中では、窒素が主要な役割を果たします。地球では、大気の78%を占め、生命に不可欠です。 土星の衛星タイタンでは、大気が98%窒素で構成されています。 太陽系のさまざまな天体や潜在的に居住可能な系外惑星における大気中の窒素とその化学サイクルの研究は、惑星の進化と地球外生命の探索を理解する上で重要です。
窒素は18世紀後半に複数の化学者によって独立して発見されました。 1772年、スコットランドの医師であり化学者であるダニエル・ラザフォード(1749-1819)は、空気から酸素と二酸化炭素を除去し、残った気体を「汚れた空気」または「フロギストン空気」と呼びました。 ほぼ同時期に、スウェーデンのカール・ヴィルヘルム・シェーレ(1742-1786)、イギリスのヘンリー・キャヴェンディッシュ(1731-1810)、ジョセフ・プリーストリー(1733-1804)も同様の実験を行いました。 1790年、フランスの化学者ジャン=アントワーヌ・シャプタル(1756-1832)は、このガスが生命や燃焼を維持できないことを強調し、ギリシャ語のa(なし)とzoe(生命)からazote(窒素)と名付けました。 英語の名前「nitrogen」(硝石生成元素)は、1790年にシャプタルによって硝石(硝酸カリウム)にちなんで導入されました。
N.B.:
ハーバー・ボッシュ法(20世紀初頭)は、大気中の窒素をアンモニアに工業的に固定することを可能にしました。これにより、世界の食糧安全保障を支える大量の肥料が生産され、私たちのタンパク質中の窒素の半分以上がこれに由来しています。 しかし、この人工的な固定(年間約15億トン)は現在、自然の固定を上回り、水の汚染(硝酸塩)、N₂Oの排出(温室効果ガス)、および窒素の自然サイクルの大きな混乱を引き起こしています。 現在の課題は、食糧生産と持続可能な窒素サイクルの回復を両立させることです。
窒素(記号N、原子番号7)は、周期表の15族(窒素族)の非金属であり、7つの陽子、通常7つの中性子(最も一般的な同位体)、および7つの電子から構成されています。 2つの安定同位体は、窒素-14 \(\,^{14}\mathrm{N}\)(≈ 99.636%)と窒素-15 \(\,^{15}\mathrm{N}\)(≈ 0.364%)です。
室温では、窒素は無色、無臭、化学的に比較的不活性な二原子ガス(N₂)として存在します。 N₂分子は非常に強い三重結合(N≡N)を持ち、通常の条件下で特に安定で反応性が低いです。 この安定性により、窒素ガスは地球の大気の約78%を体積で占めています。 N₂ガスの密度は標準温度と圧力で約1.251 g/Lです。 液体と固体が共存できる温度(融点):63.15 K(−210.00 °C)。 液体から気体に変化する温度(沸点):77.355 K(−195.795 °C)。
| 同位体 / 表記 | 陽子 (Z) | 中性子 (N) | 原子質量 (u) | 天然存在比 | 半減期 / 安定性 | 崩壊 / 備考 |
|---|---|---|---|---|---|---|
| 窒素-13 — \(\,^{13}\mathrm{N}\,\) | 7 | 6 | 13.005739 u | 天然に存在しない | 9.965 分 | β\(^+\)崩壊により \(\,^{13}\mathrm{C}\) になる;陽電子放出断層撮影(PET)に使用される。 |
| 窒素-14 — \(\,^{14}\mathrm{N}\,\) | 7 | 7 | 14.003074 u | ≈ 99.636% | 安定 | 主要同位体;地球上の生命のすべてのタンパク質と核酸の基礎。 |
| 窒素-15 — \(\,^{15}\mathrm{N}\,\) | 7 | 8 | 15.000109 u | ≈ 0.364% | 安定 | NMR分光法、生物学的トレーサー、窒素サイクルの研究に使用される。 |
| 窒素-16 — \(\,^{16}\mathrm{N}\,\) | 7 | 9 | 16.006102 u | 天然に存在しない | 7.13 秒 | β\(^-\)崩壊により \(\,^{16}\mathrm{O}\) になる;原子炉で生成される。 |
| 窒素-17 — \(\,^{17}\mathrm{N}\,\) | 7 | 10 | 17.008450 u | 天然に存在しない | 4.173 秒 | β\(^-\)崩壊;核研究に使用される。 |
| その他の同位体 — \(\,^{10}\mathrm{N}-\,^{12}\mathrm{N},\,^{18}\mathrm{N}-\,^{25}\mathrm{N}\) | 7 | 3-5, 11-18 | — (共鳴) | 天然に存在しない | \(10^{-22}\) — 0.63 秒 | 核物理学で観察される非常に不安定な状態;粒子放出またはβ放射性崩壊による崩壊。 |
N.B.:
電子殻:電子が原子核の周りにどのように配置されるか。
窒素は7つの電子を持ち、それらは2つの電子殻に分布しています。その完全な電子配置は:1s² 2s² 2p³、 または簡略化すると:[He] 2s² 2p³。この配置はK(2) L(5)とも表記できます。
K殻 (n=1):1s軌道に2つの電子を含みます。この内側の殻は完全で非常に安定しています。
L殻 (n=2):2s² 2p³に分布する5つの電子を含みます。2s軌道は完全ですが、2p軌道は6つ可能なうち3つの電子しか含まず、フントの規則に従って各2p軌道に1つずつ電子が存在します。したがって、ネオンの安定した8電子構成(オクテット)に達するためには3つの電子が不足しています。
窒素は15族(窒素族)に属し、5つの価電子(2s² 2p³)を持ちます。この配置はその多様性を説明しています:3つの共有結合を形成し(NH₃のような-3の状態)、または+5(HNO₃)までの正の酸化状態に達することができます。N₂分子は例外的に安定した三重結合を持ち、0の状態に相当します。
窒素分子(N₂)は地球の大気の78%を占めます。室温での不活性は、不活性ガスとしての利用に適しています。しかし、一度活性化されると、窒素は生命(タンパク質、DNA)、農業(ハーバー・ボッシュ法による肥料)、産業(爆薬、硝酸)の重要な要素となります。その液化は、低温応用も可能にします。
窒素は5つの価電子を持ち、通常、3つの共有結合を形成します(アンモニアNH₃の-3の酸化状態)、または電子を失って-3から+5までのさまざまな酸化状態に達することができます。 二原子分子N₂のN≡N三重結合は、最も強い化学結合の1つ(解離エネルギー≈ 945 kJ/mol)であり、室温での窒素分子を非常に反応性が低くしています。 この不活性は、保護的な不活性ガス雰囲気を作り出すために工業的に利用されています。
しかし、三重結合が破られると(高温、高圧、または触媒が必要)、窒素は非常に反応性が高くなります。 窒素はほとんどすべての元素と化合物を形成し、特に水素(アンモニアNH₃、ヒドラジンN₂H₄)、酸素(窒素酸化物:NO、NO₂、N₂O、N₂O₃、N₂O₅)、ハロゲン(窒素三ハロゲン化物)、および多くの金属(窒化物)と化合物を形成します。 窒素化合物は、必須の肥料(硝酸塩、アンモニア)から強力な爆薬(TNT、ニトログリセリン)、生命のタンパク質や核酸に至るまで、驚くべき範囲の性質を示します。
窒素サイクルは、地球上で最も重要な生物地球化学的サイクルの1つです。 N₂は大気中に豊富に存在しますが、ほとんどの生物は直接利用することができません。 一部の細菌(共生または自由生活)による生物学的窒素固定は、N₂をアンモニアに変換し、植物が吸収できるようにします。 他の細菌は、硝化(亜硝酸塩から硝酸塩への変換)と脱窒(窒素の大気への戻り)を行います。 人類は、ハーバー・ボッシュ法による大規模な工業的窒素肥料の生産により、この自然サイクルを深刻に混乱させています。