fr en es pt
astronomie
 
 
Dernière mise à jour 3 avril 2015

Neutrino

Qu'est qu'un neutrino ?

Les neutrinos sont des particules subatomiques, appartenant aux leptons, composants de la matière, dite ordinaire avec les quarks et les électrons (voir tableau joint).
Le neutrino a une masse supposée nulle, mais elle n'a jamais été mesurée, cependant il est admis qu'elle n'est pas nulle.
Le neutrino n'est pas sensible à l'interaction forte (force nucléaire), par contre, il est sensible à l'interaction faible, responsable de la désintégration de l'atome, et peut-être à l'interaction électromagnétique.
Des centaines de milliards de neutrinos traversent notre corps chaque seconde, même un mur gigantesque de plomb ne peut arrêter les neutrinos, ce qui explique qu'ils sont très difficiles à détecter. Cependant, de temps en temps, un neutrino percute la matière, ce sont eux que les scientifiques guettent avec leurs détecteurs.
Les neutrinos sont émis en abondance par les étoiles, lors de l’effondrement d’une supernova.
Les neutrinos voyagent à une vitesse proche de celle de la lumière et interagissent très faiblement avec la matière.
Il existe 3 saveurs de neutrinos :
- Le neutrino électronique (νε), découvert en 1956, par Frederick Reines (1918 − 1998) et Clyde Cowan (1919 − 1974), accompagne l'émission d’un électron. Il est émis lors de la désintégration β-, c'est-à-dire lors de la transformation d'un neutron en proton.
- Le neutrino muonique (νµ) découvert en 1962, à Brookhaven. Il est émis lors de la désintégration d'un muon (électron lourd).

- Le neutrino tauique (ντ) découvert en 2000, au Fermilab de Batavia, près de Chicago. Il est émis lors de la désintégration d'un tauon.
Seul le neutrino électronique est stable, les autres sont instables et se désintègrent très rapidement pour rejoindre une particule stable.
La désintégration radioactive est la transformation de la matière en énergie, le nombre de noyaux radioactifs diminue dans le temps, il est régi par le hasard et sa loi est statistique.
Les détecteurs de neutrinos sont généralement situés profondément sous terre ou sous la mer, afin d'éviter le plus possible, le bruit de fond cosmique. Dans le détecteur au chlore, un éventuel choc d'un neutrino convertit un atome de chlore en un atome d’argon. Dans un détecteur au gallium, un neutrino peut convertir un atome de gallium, en germanium.
Le détecteur OPERA, du Gran Sasso en Italie, sert aux expériences de physique des particules, destinées à étudier le phénomène d'oscillation des neutrinos.

N. B. : à l'intérieur d'un atome on trouve des nucléons, c’est à dire des protons et des neutrons, à l'intérieur desquels il y a des quarks. Le noyau atomique est entouré d'un nuage électronique. La nature de la matière est beaucoup plus complexe qu'on le pensait au 20ème siècle. On sait maintenant que le monde des particules est extrêmement riche. Pour comprendre l'infiniment grand, l'homme crée des machines infernales (Tevatron, LHC,...), de plus en plus puissantes pour "éplucher" la matière, jusqu'aux confins de l'infiniment petit.

constituants de la matière, les neutrinos

Image : Quatre de ces particules élémentaires suffiraient en principe pour construire le monde qui nous entoure : les quarks up et down, l'électron et le neutrino électronique. Les autres sont instables et se désintègrent pour rejoindre ces quatre particules.
Les sources de neutrinos dans la nature sont la Terre, l'atmosphère, le Soleil, les supernovæ, les réacteurs nucléaires et l'être humain via les quelques mg de potassium radioactif qu'il contient. Un être humain émet ≈340 millions de neutrinos par jour.

Neutrino et émission bêta

Dans le monde des particules subatomiques qui constituent la matière, on manipule les énergies les plus petites de la nature et des longueurs extrêmement petites, de l'ordre de 10−15 à 10−17 mètre, bien en dessous de la taille d'un atome qui est de 10−10 mètre. Mais on sait qu'un atome est constitué de 99,99% de vide et c'est à cette échelle que les neutrinos se situent. Les particules ne sont pas visibles mais cependant elles sont détectables, si on y applique une énergie suffisante, de l'ordre du giga électronvolt (GeV). Énergie et masse sont deux aspects d’un même phénomène physique, conformément à la célèbre équation d’Einstein (E = mc2), la masse peut se transformer en énergie et inversement. En raison de cette équivalence, masse et énergie peuvent être mesurées avec la même unité. À l’échelle de la physique des particules il s’agit de l’électronvolt (eV).
La radioactivité est un phénomène physique qui se produit dans le noyau, au plus profond des atomes. Les nucléons ne sont pas tous stables, ils se désintègrent en passant d'un état à un autre état d'équilibre. La désintégration est la transformation de la matière en énergie (E=mc2). En se désintégrant, les noyaux émettent des particules de différentes énergies.
Il y a 3 types de radioactivité :
- La radioactivité alpha (α) émet des particules chargées (2 neutrons et 2 protons), sensibles au champ magnétique. Ces particules ne traversent pas une feuille de papier.
- La radioactivité gamma (γ) émet une particule, un photon non visible qui a une énergie de 1 GeV, 1 million de fois plus énergétique que le photon de lumière visible. Ces particules ne s'arrêtent que devant une plaque de plomb. Ces photons gamma ont une charge électromagnétique nulle et sont donc insensibles au champ magnétique.

- La radioactivité bêta (β) concerne les neutrinos. Cela va se passer lors de la désintégration d'un noyau, comme le cobalt 60 qui va transmuter en nickel 60 et au cours de cette transmutation, il y aura émission d'un électron et d'un neutrino ou d'un antineutrino.
C'est la mesure des énergies de la désintégration bêta qui en 1931, amena Wolfgang Pauli (1900 − 1958) à proposer que l'énergie « manquante » était emportée par une autre particule nouvelle, le neutrino.
Le neutron n'est pas encore découvert, il sera découvert par le physicien britannique James Chadwick (1891 − 1974) en 1932.
La radioactivité bêta moins est l'émission d'un électron et d'un antineutrino accompagnant la transformation d'un neutron en proton.
La radioactivité bêta plus est la transformation d'un proton en neutron, avec émission d'un positon et d'un neutrino.
C'est la force nucléaire faible qui est responsable de la désintégration d'un neutron en proton ou d'un proton en neutron sans changer le nombre de nucléons. Pour équilibrer la charge, un électron ou un positon est expulsé du noyau. L'émission de l'électron est accompagnée d'un antineutrino électronique ∇e alors que celle du positon est accompagnée d'un neutrino électronique νe.
Quelques émetteurs bêta moins existent à l'état naturel :
- le tritium 3 (3H+) qui se transforme en hélium 3 (3He2+)
- le carbone 14 (14C) lors de l'absorption de neutrons par l'azote 14 (14N) de la stratosphère et des couches hautes de la troposphère.
- le potassium 40 (40K) qui se transforme en calcium 40 (40Ca).

Radioactivité beta

Image : exemple de désintégration bêta, pour l’isotope radioactif cobalt 60 (60Co). Un noyau de cobalt 60, contient 33 neutrons (en gris) et 27 protons (en rouge), il présente un excès de 6 neutrons. Un neutron va se transformer en proton. Le noyau de cobalt 60 devient plus stable et se transforme en nickel 60 (60Ni+) avec 28 protons (1 de plus) et 32 neutrons (1 de moins), mais toujours 60 nucléons. Lors de la désintégration, deux particules sont créées, un électron et un antineutrino électronique. Il existe deux variantes de radioactivité bêta, la radioactivité bêta moins, comme ici avec le cobalt 60 qui se transmute en nickel 60 avec émission d'un électron et la radioactivité bêta plus qui émet un positon et un neutrino électronique.

Un phénomène en physique est une observation qui montre comment un système physique ou un corps physique interagit avec l'environnement (comment il se transforme, comment il se met en mouvement, comment il change d'état, comment il modifie sa température, etc.).
En générale, il n'y a pas de modification de la nature du corps physique cela concerne plutôt la thermodynamique du corps. c'est-à-dire la façon dont le corps physique va échanger de l'énergie avec l'environnement, comment il va réagir sans altération.
Quelques exemples de phénomènes en physique :
- Une pile va interagir en transformant de l'énergie chimique (réaction chimique entre deux substances) en énergie électrique (la nature de la pile ne change pas, la pile reste une pile).
- Un moteur électrique va interagir en transformant l'énergie électrique (déplacement d'électrons) en mouvement (le moteur reste un moteur).
- Un cyclone va interagir en transformant de l'énergie calorifique (la chaleur de l'océan) en mouvement (vortex des masses d'air).
- Une éolienne va interagir en transformant un mouvement (déplacement des molécules d'air) en énergie électrique (rotation d'une bobine magnétique qui elle-même transforme son énergie en énergie électrique).
- L'eau qui boue dans une casserole va interagir en dissipant au mieux l'énergie calorifique, au début elle diffuse progressivement l'énergie par conduction (les molécules d'eau s'échauffent de proche en proche), ensuite elle va diffuser son énergie par convection (les molécules d'eau s'agitent de plus en plus), et enfin l'eau s'évapore mais l'eau reste de l'eau, elle change simplement d'état.
Le lepton est une particule élémentaire sur laquelle la force nucléaire forte n'a pas d'influence. L'électron, le positon et le neutrino sont des particules de faible masse regroupées sous le nom de lepton, qui en grec signifie [léger]. Les leptons sont des fermions (briques de base de la matière), c'est-à-dire des particules de spin 1/2. Les leptons chargés sont l'électron et le positron, le muon et son anti-particules, le tauon et son anti-particules. Dans le modèle standard de la physique des particules, il existe douze saveurs de fermions élémentaires : six quarks et six leptons. Les quarks contrairement aux leptons, interagissent par l’intermédiaire de l’interaction forte. L'électronvolt (symbole eV) est une unité de mesure d'énergie ou de masse. Sa valeur est définie comme étant l'énergie cinétique acquise par un électron accéléré depuis le repos par une différence de potentiel de 1 volt. Un électron-volt est égal à environ : 1 eV = 1,602 176 565(35) × 10-19 joule (J). D'après la relativité restreinte E = m·c2, on déduit : 1 eV/c2 = 1.783 × 10-36. La masse de l'électron est de 511 keV/c2, celle du proton de 938 MeV/c2 et celle du neutron est de 940 MeV/c2. Un électron est un constituant fondamental de la matière.
Autour d’un noyau, certaines régions sont dépeuplées d’électrons alors que d’autres régions en fourmillent. Les lois de la mécanique quantique permettent de faire la distinction entre ces régions. L'électron possède une charge électrique de signe négatif considérée comme indivisible, e = 1,59 x 10-19 coulomb et une masse m = 9 x 10-28 gramme.
Un électronvolt, eV = 1,602 x 10−19 Joule.
L'électron est la première particule élémentaire mise en évidence dans de nombreuses expériences entre la fin du XIXe siècle et le début du XXe.
Lorsque le neutrino traverse la matière, sa propriété (saveur) est modifiée. L'oscillation du neutrino est un phénomène de la mécanique quantique, selon lequel un neutrino apparu avec une certaine saveur leptonique (électronique, muonique ou tauique) peut plus tard obtenir une saveur différente. Théoriquement, un neutrino pourrait osciller dans ces trois saveurs.

Artícles sur le même thème


1997 © Astronoo.com − Astronomie, Astrophysique, Évolution et Écologie.
"Les données disponibles sur ce site peuvent être utilisées à condition que la source soit dûment mentionnée."
Contact −  Mentions légales −  Sitemap Français −  Sitemap Complet −  Comment Google utilise les données