fr en es pt ja
Astronomy
Asteroids and Comets Black Holes Children Chemical Elements Constellations Earth Eclipses Environment Equations Evolution Exoplanets Galaxies Light Matter Moons Nebulas Planets Probes and Telescopes Scientists Stars Sun Universe Volcanoes Zodiac New Articles Glossary
RSS astronoo
Follow me on X
Follow me on Bluesky
Follow me on Pinterest
English
Français
Español
Português
日本語
 
Last update: October 11, 2025

Bose-Einstein Condensate: When Matter Becomes a Single Quantum State

Bose-Einstein Condensates

The Bose-Einstein condensate (BEC) is a state of matter in which a large number of atoms, cooled to near absolute zero, occupy the same quantum state. This phenomenon, theoretically predicted by Satyendra Nath Bose (1894-1974) and Albert Einstein (1879-1955) in 1924-1925, was first observed experimentally in 1995 by Eric Cornell (1961-) and Carl Wieman (1951-) using rubidium.

Physical and Quantum Properties

In a Bose-Einstein condensate, atoms collectively behave as a single macroscopic wave, perfectly illustrating wave-particle duality. Atomic density and quantum coherence allow the observation of phenomena such as superfluidity and interference on a macroscopic scale.

The typical temperature to achieve a Bose-Einstein condensate is on the order of nanokelvins (\(\approx 10^{-9}\, K\)). At this scale, the kinetic energy of the atoms is so low that quantum effects completely dominate their dynamics.

Experimental Methods

Main techniques include magnetic trapping and laser cooling. Atoms are first slowed by photon absorption and re-emission, then confined in magnetic or optical potentials to reach the temperatures required for condensation.

Applications and Perspectives

Bose-Einstein condensates allow the study of quantum physics at a macroscopic scale, simulation of astrophysical phenomena, and development of technologies such as ultra-precise interferometry, atomic clocks, and gravity sensors.

Comparison Table of Matter States and Condensates

Comparison of properties of different states of matter
StateTypical TemperatureQuantum BehaviorExample
Solid300 KLocal quantum effectsDiamond
Liquid300 KPartial quantum effectsLiquid H₂O
Gas300 KClassicalO₂ gas
Bose-Einstein Condensate≈ 10⁻⁹ KFull macroscopic quantum coherenceRubidium, Sodium

Source: NIST – Bose-Einstein Condensates and Physics World – BEC 20 Years.

The Bose-Einstein condensate spectacularly illustrates how quantum physics can dominate the collective behavior of matter, opening the way to unprecedented experimental and technological applications.

Articles on the same theme

Water Anomalies: A Common and Abundant Molecule in the Universe Water Anomalies: A Common and Abundant Molecule in the Universe
What is Dust? Between the Dust on Our Shelves and the Dust that Builds Planets What is Dust? Between the Dust on Our Shelves and the Dust that Builds Planets
Heat and Temperature: Two Often Confused Thermal Notions Heat and Temperature: Two Often Confused Thermal Notions
Electroweak Force: The Unification of Electromagnetism and the Weak Interaction Electroweak Force: The Unification of Electromagnetism and the Weak Interaction
Special Relativity: The Beginning of a New Physics Special Relativity: The Beginning of a New Physics
The Higgs Boson: The Unification of Fundamental Forces The Higgs Boson: The Unification of Fundamental Forces
Quantum Entanglement: When Two Particles Become One! Quantum Entanglement: When Two Particles Become One!
The Pentaquark: A New Piece of the Cosmic Puzzle! The Pentaquark: A New Piece of the Cosmic Puzzle!
Why are Rare Gases rare? Why are Rare Gases rare?
Brownian Motion: A Link Between Two Worlds Brownian Motion: A Link Between Two Worlds
The 4 Articles of Albert Einstein from 1905 The 4 Articles of Albert Einstein from 1905
Why does nuclear fusion require so much energy? Why does nuclear fusion require so much energy?
Feynman diagrams and particle physics Feynman diagrams and particle physics
The nuclear instability barrier Stars cannot create elements heavier than iron because of the nuclear instability barrier
Alpha, Beta, and Gamma Radiation: Understanding Their Differences Alpha, Beta, and Gamma Radiation: Understanding Their Differences
Planck wall theory Planck wall theory
Is Absolute Vacuum a Utopia? Is Absolute Vacuum a Utopia?
Giant Colliders: Why the LHC is Unique in the World Giant Colliders: Why the LHC is Unique in the World
The World of Hadrons: From the LHC to Neutron Stars The World of Hadrons: From the LHC to Neutron Stars
Radioactivity, natural and artificial Radioactivity, natural and artificial
The World of Nanoparticles: An Invisible Revolution The World of Nanoparticles: An Invisible Revolution
Schrodinger's Cat Schrodinger's Cat
Eternal inflation Eternal inflation
What is a wave? What is a wave?
Quantum Field Theory: Everything is Fields Quantum Field Theory: Everything is Fields
Quantum Computers: Between Scientific Revolution and Technological Challenges Quantum Computers: Between Scientific Revolution and Technological Challenges
Bose-Einstein condensate Bose-Einstein condensate
Field concept in physics Field concept in physics
From Probability Cloud to Particle: The Electron in Quantum Mechanics From Probability Cloud to Particle: The Electron in Quantum Mechanics
What is Entropy? A Journey into Disorder and Information What is Entropy? A Journey into Disorder and Information
Beta Radioactivity and Neutrino: A Story of Mass and Spin Beta Radioactivity and Neutrino: A Story of Mass and Spin
Spacetime: Space and Time United, understand this concept Spacetime: Space and Time United, understand this concept
Time Measurement: Scientific and Technological Challenge Time Measurement: Scientific and Technological Challenge
Physical and Cosmological Constants: Universal Numbers at the Origin of Everything Physical and Cosmological Constants: Universal Numbers at the Origin of Everything
Spectroscopy, an inexhaustible source of information Spectroscopy, an inexhaustible source of information
Abundance of chemical elements in the universe Abundance of chemical elements in the universe
The size of atoms The size of atoms
Magnetism and Magnetization: Why Are Some Materials Magnetic? Magnetism and Magnetization: Why Are Some Materials Magnetic?
Quarks and Gluons: A Story of Confinement Quarks and Gluons: A Story of Confinement
Superpositions of quantum states Superpositions of quantum states
Alpha decay (α) Alpha decay (α)
Electromagnetic induction equation Electromagnetic induction equation
Fusion and Fission: Two Nuclear Reactions, Two Energy Paths Fusion and Fission: Two Nuclear Reactions, Two Energy Paths
From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models
The Origins of Mass: Between Inertia and Gravitation The Origins of Mass: Between Inertia and Gravitation
From the Nucleus to Electricity: Anatomy of a Nuclear Power Plant From the Nucleus to Electricity: Anatomy of a Nuclear Power Plant
How many photons to heat a coffee? How many photons to heat a coffee?
Seeing Atoms: An Exploration of Atomic Structure Seeing Atoms: An Exploration of Atomic Structure
Quantum tunneling of quantum mechanics Quantum tunneling of quantum mechanics
Entropy: What is Time? Entropy: What is Time?
The 12 Particles of Matter: Understanding the Universe at the Subatomic Scale The 12 Particles of Matter: Understanding the Universe at the Subatomic Scale
The Atomic Orbital: Image of the Atom The Atomic Orbital: Image of the Atom
The valley of stability of atomic nuclei The valley of stability of atomic nuclei
Antimatter: The Enigmas of Antiparticles and Their Energy Antimatter: The Enigmas of Antiparticles and Their Energy
What is an electric charge? What is an electric charge?
Our matter is not quantum! Our matter is not quantum!
Why use hydrogen in the fuel cell? Why use hydrogen in the fuel cell?
Newton and Einstein: Two Visions for the Same Mystery Newton and Einstein: Two Visions for the Same Mystery
Where does the proton's mass come from? Where does the proton's mass come from?
Einstein's Universe: Physical Foundations of the Theory of Relativistic Gravitation Einstein's Universe: Physical Foundations of the Theory of Relativistic Gravitation
1905, The Silent Revolution: When Einstein Rewrote the Laws of Nature 1905, The Silent Revolution: When Einstein Rewrote the Laws of Nature
What does the equation E=mc2 really mean? What does the equation E=mc2 really mean?
Between Waves and Particles: The Mystery of DualityBetween Waves and Particles: The Mystery of Duality
The Supercritical State of Water: Between Liquid and Gas, a Fourth Phase? The Supercritical State of Water: Between Liquid and Gas, a Fourth Phase?
Quantum Mechanics and Spirituality: Another Way to See the World Quantum Mechanics and Spirituality: Another Way to See the World