fr en es pt
Astronomy
Asteroids and Comets Black Holes Children Chemical Elements Constellations Earth Eclipses Environment Equations Evolution Exoplanets Galaxies Light Matter Moons Nebulas Planets Probes and Telescopes Scientists Stars Sun Universe Volcanoes Zodiac New Articles Shorts Glossary
RSS astronoo
Follow me on X
Follow me on Bluesky
Follow me on Pinterest
English
Français
Español
Português
 
Last updated September 10, 2025

Magnetism and Magnetization: Why Are Some Materials Magnetic?

Electron spins and quantum magnetism

Microscopic Origin of Magnetism

Magnetism is a collective manifestation of magnetization. It originates from two fundamental contributions: the orbital moment and the spin. Each electron carries a magnetic moment proportional to its spin.

Exchange Interaction and Ferromagnetism

The explanation of magnetism cannot be made without considering the exchange interaction. This purely quantum interaction favors the parallel alignment of spins in certain materials. This is how ferromagnetism arises, studied by Werner Heisenberg (1901-1976), where collective magnetization persists even in the absence of an external field.

Quantum Magnetism and Applications

Quantum magnetism explains the diversity of behaviors: diamagnetism, paramagnetism, ferromagnetism, or antiferromagnetism. These phenomena are crucial in modern technologies, from magnetic memories to spintronic materials. For example, the GMR effect directly results from the quantum control of spin.

Magnetic Phenomena and Quantum Explanations
Type of MagnetismQuantum OriginExample MaterialComment
DiamagnetismOpposing reaction to the field by induced orbital currentsBismuthUniversal but weak effect, present in all materials
ParamagnetismIndependent magnetic moments aligned by the fieldAluminumObservable at low temperatures, disappears as T increases
FerromagnetismExchange interaction favoring parallel alignmentIron, cobalt, nickelSource of permanent magnets and many applications
AntiferromagnetismNeighboring spins aligned antiparallel by exchangeManganese oxideMagnetic order invisible from the outside, discovered by Néel

Simplified Summary: Why Are Some Materials Magnetic?

Magnetism may seem mysterious: why does a piece of iron stick to a magnet while a piece of aluminum does not? The answer lies in quantum mechanics. Each electron has a kind of internal "compass," called a magnetic moment, linked to its spin. In most materials, these compasses point in random directions and cancel each other out. But in some cases, such as iron, a special interaction—the exchange interaction—pushes electrons to align their spins. This collective behavior creates a macroscopic magnetic field that we perceive as magnetization.

Thus, magnetism is not due to tiny charges spinning like planets around a sun, but to a deep quantum property of matter. The differences between diamagnetism (weak repulsion), paramagnetism (temporary alignment), ferromagnetism (permanent magnet), and antiferromagnetism (opposite alignments) all stem from this invisible physics. In short, what distinguishes a magnet from an ordinary metal is the hidden order of electron spins.

Articles on the same theme

Water Anomalies: A Common and Abundant Molecule in the Universe Water Anomalies: A Common and Abundant Molecule in the Universe
What is Dust? Between the Dust on Our Shelves and the Dust that Builds Planets What is Dust? Between the Dust on Our Shelves and the Dust that Builds Planets
Heat and Temperature: Two Often Confused Thermal Notions Heat and Temperature: Two Often Confused Thermal Notions
Electroweak Force: The Unification of Electromagnetism and the Weak Interaction Electroweak Force: The Unification of Electromagnetism and the Weak Interaction
Special Relativity: The Beginning of a New Physics Special Relativity: The Beginning of a New Physics
The Higgs Boson: The Unification of Fundamental Forces The Higgs Boson: The Unification of Fundamental Forces
Quantum Entanglement: When Two Particles Become One! Quantum Entanglement: When Two Particles Become One!
The Pentaquark: A New Piece of the Cosmic Puzzle! The Pentaquark: A New Piece of the Cosmic Puzzle!
Why are Rare Gases rare? Why are Rare Gases rare?
Brownian Motion: A Link Between Two Worlds Brownian Motion: A Link Between Two Worlds
The 4 Articles of Albert Einstein from 1905 The 4 Articles of Albert Einstein from 1905
Why does nuclear fusion require so much energy? Why does nuclear fusion require so much energy?
Feynman diagrams and particle physics Feynman diagrams and particle physics
The nuclear instability barrier Stars cannot create elements heavier than iron because of the nuclear instability barrier
Alpha, Beta, and Gamma Radiation: Understanding Their Differences Alpha, Beta, and Gamma Radiation: Understanding Their Differences
Planck wall theory Planck wall theory
Is emptiness really empty? Is emptiness really empty?
Giant Colliders: Why the LHC is Unique in the World Giant Colliders: Why the LHC is Unique in the World
The World of Hadrons: From the LHC to Neutron Stars The World of Hadrons: From the LHC to Neutron Stars
Radioactivity, natural and artificial Radioactivity, natural and artificial
The World of Nanoparticles: An Invisible Revolution The World of Nanoparticles: An Invisible Revolution
Schrodinger's Cat Schrodinger's Cat
Before the big bang the multiverse Before the big bang the multiverse
Eternal inflation Eternal inflation
What is a wave? What is a wave?
Quantum Field Theory: Everything is Fields Quantum Field Theory: Everything is Fields
Quantum computers Quantum computers
Bose-Einstein condensate Bose-Einstein condensate
Equation of Newton's three laws Equation of Newton's three laws
Field concept in physics Field concept in physics
The electron, a kind of electrical point The electron, a kind of electrical point
Entropy and disorder Entropy and disorder
The infernal journey of the photon The infernal journey of the photon
Mystery of the Big Bang, the problem of the horizon Mystery of the Big Bang, the problem of the horizon
Beta Radioactivity and Neutrino: A Story of Mass and Spin Beta Radioactivity and Neutrino: A Story of Mass and Spin
Spacetime: Space and Time United, understand this concept Spacetime: Space and Time United, understand this concept
Time Measurement: Scientific and Technological Challenge Time Measurement: Scientific and Technological Challenge
Physical and Cosmological Constants: Universal Numbers at the Origin of Everything Physical and Cosmological Constants: Universal Numbers at the Origin of Everything
Spectroscopy, an inexhaustible source of information Spectroscopy, an inexhaustible source of information
Abundance of chemical elements in the universe Abundance of chemical elements in the universe
The size of atoms The size of atoms
Magnetism and Magnetization: Why Are Some Materials Magnetic? Magnetism and Magnetization: Why Are Some Materials Magnetic?
Quarks and Gluons: A Story of Confinement Quarks and Gluons: A Story of Confinement
Superpositions of quantum states Superpositions of quantum states
Alpha decay (α) Alpha decay (α)
Electromagnetic induction equation Electromagnetic induction equation
Fusion and Fission: Two Nuclear Reactions, Two Energy Paths Fusion and Fission: Two Nuclear Reactions, Two Energy Paths
From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models
The Origins of Mass: Between Inertia and Gravitation The Origins of Mass: Between Inertia and Gravitation
From the Nucleus to Electricity: Anatomy of a Nuclear Power Plant From the Nucleus to Electricity: Anatomy of a Nuclear Power Plant
The Universe of X-rays The Universe of X-rays
How many photons to heat a coffee? How many photons to heat a coffee?
Seeing Atoms: An Exploration of Atomic Structure Seeing Atoms: An Exploration of Atomic Structure
Quantum tunneling of quantum mechanics Quantum tunneling of quantum mechanics
Entropy: What is Time? Entropy: What is Time?
The 12 Particles of Matter: Understanding the Universe at the Subatomic Scale The 12 Particles of Matter: Understanding the Universe at the Subatomic Scale
The Atomic Orbital: Image of the Atom The Atomic Orbital: Image of the Atom
The valley of stability of atomic nuclei The valley of stability of atomic nuclei
Antimatter: The Enigmas of Antiparticles and Their Energy Antimatter: The Enigmas of Antiparticles and Their Energy
What is an electric charge? What is an electric charge?
Our matter is not quantum! Our matter is not quantum!
Why use hydrogen in the fuel cell? Why use hydrogen in the fuel cell?
Newton and Einstein: Two Visions for the Same Mystery Newton and Einstein: Two Visions for the Same Mystery
Where does the proton's mass come from? Where does the proton's mass come from?
Einstein's Universe: Physical Foundations of the Theory of Relativistic Gravitation Einstein's Universe: Physical Foundations of the Theory of Relativistic Gravitation
1905, The Silent Revolution: When Einstein Rewrote the Laws of Nature 1905, The Silent Revolution: When Einstein Rewrote the Laws of Nature
What does the equation E=mc2 really mean? What does the equation E=mc2 really mean?
Between Waves and Particles: The Mystery of DualityBetween Waves and Particles: The Mystery of Duality
The Supercritical State of Water: Between Liquid and Gas, a Fourth Phase? The Supercritical State of Water: Between Liquid and Gas, a Fourth Phase?
Quantum Mechanics and Spirituality: Another Way to See the World Quantum Mechanics and Spirituality: Another Way to See the World

1997 © Astronoo.com − Astronomy, Astrophysics, Evolution and Ecology.
"The data available on this site may be used provided that the source is duly acknowledged."
How Google uses data
Legal mentions
English Sitemap − Full Sitemap
Contact the author