fr en es pt
Astronomy
Asteroids and Comets Black Holes Children Constellations Earth Eclipses Environment Equations Evolution Exoplanets Galaxies Light Matter Moons Nebulas Planets and Dwarf Planets Probes and Telescopes Scientists Stars Sun Universe Volcanoes Zodiac New articles Short Articles Archives
Contact the author
RSS astronoo
Follow me on Bluesky
English
Français
Español
Português
 


Last updated 01 June 2013

Seeing Atoms: An Exploration of Atomic Structure

Seeing Atoms: An Exploration of Atomic Structure

Image description: Representation of the atomic structure of the helium-4 atom. For readability reasons, the image above is not to scale. The atomic nucleus appears in pink in the center and, in shades of gray all around, the electron cloud or atomic orbital. The helium-4 nucleus is schematically enlarged, showing the two protons and two neutrons in red and purple, its size is 1 femtometer or 10^-15 meters. In reality, the nucleus (and the wave function of each of the nucleons) is also spherical, like the electrons of the atom. Image source: public domain.

Structure of the atom

Everything we see is made up of atoms, many atoms from the Greek word "atomos" (indivisible). A long time ago, in the 4th century BC, the Greek philosophers Leucippus and Democritus hypothesized that all matter is composed of tiny particles in perpetual motion, very solid and eternal. Today we have a slightly more precise idea of the atom because it is not indivisible.

We have known its approximate size since 1811, Amedeo Avogadro estimated the size of atoms to be 10^-10 meters. In 1911, Ernest Rutherford specified the structure of the atom and gave a size to the atomic nucleus of the order of 10^-14 meters.

Regarding the size of atoms, we speak of atomic orbitals, that is, the electron cloud that surrounds the nucleus. This cloud has a theoretical diameter ranging from 62 pm (picometers) for the helium atom to 596 pm for the cesium atom. Nothing is simple in the nature of matter and this tiny distance varies depending on the chemical nature of the surrounding atoms.

Although the nucleus concentrates most of the mass of the atom (99.99%), we also know its mass, for stable atoms, it ranges between 1.674×10^-24 g for hydrogen and 3.953×10^-22 g for uranium.

We also know its composition, inside we see a nucleus and an electron cloud that occupies the entire spatial extent of the atom since it is more than 10,000 times larger than its nucleus. Even more astonishing, we even know the number of atoms in the universe, this number is extraordinarily large, if we had to write it, we would have to write a 1 followed by 72 zeros.

Stability of atoms

The stability of the atom is not explained by classical physics because in classical physics, the negatively charged corpuscular electron and the positively charged proton raise a paradox.

In classical physics, matter should disappear, annihilate because an electron radiating around a nucleus loses energy (Maxwell's theory) and therefore should fall onto the nucleus. This means that the stability of an atom is incomprehensible within the framework of classical theory.

The scientific geniuses of the 20th century resolved this paradox in 1924, thanks to the wave mechanics of Louis de Broglie (1892-1987) generalized in 1926 by Erwin Schrödinger (1887-1961), Nobel Prize in Physics in 1933 with Paul Dirac (1902-1984) for the wave equation called the Schrödinger equation.

In quantum mechanics, it is not possible to know exactly the value of a parameter without measuring it. The mathematical theory describes a state, not by a precise speed and position pair, but by a wave function (state vector), which allows calculating the probability of finding the particle at a point. Hence the probabilistic nature of quantum mechanics, which predicts that particles are also waves and no longer just material points.

Electrons occupy atomic orbitals in interaction with the nucleus via the electromagnetic force, while nucleons are held together within the nucleus by the nuclear bond.

The electron cloud is stratified into quantized energy levels around the nucleus, defining electron shells and subshells. Nucleons are also distributed in nuclear shells, although a fairly convenient model popularizes the nuclear structure according to the liquid drop model.

Several atoms can establish chemical bonds with each other through their electrons, and in general, the chemical properties of atoms are determined by their electronic configuration, which in turn depends on the number of protons in their nucleus. This number, called the atomic number, defines a chemical element.

Visible gold atoms

Closest to matter, the surface of a sheet of pure gold (Au 100) is detailed here by a scanning tunneling microscope. The gold atoms visible in this image are regularly spaced on the crystalline structure of gold. This atomic image was made with a low-temperature Omicron STM by Erwin Rossen, Eindhoven University of Technology, in 2006.

Image of pure gold atom seen by scanning tunneling microscope

Size of atoms

Theoretical atomic radius (calculated) of certain atoms (size in picometers (10^-12 meters). The atomic radius is half the distance that separates the nuclei of two contiguous atoms. The values indicated in this table are only indicative.

Theoretical size of atoms in picometers (pm)
(1 pm = 10-12 meter)
 size size  size  size
H  Hydrogen :
number of electron by energy levels 1
53Ca Calcium :
number of electron by energy levels 2, 8, 8, 2
194Y  Yttrium :
number of electron by energy levels 2, 8, 18, 9, 2
212Hf Hafnium :
number of electron by energy levels 2, 8, 18, 32, 10, 2
208
He Helium :
number of electron by energy levels 2
31Sc Scandium :
number of electron by energy levels 2, 8, 9, 2
184Zr Zirconium :
number of electron by energy levels 2, 8, 18, 10, 2
206Ta Tantalum :
number of electron by energy levels 2, 8, 18, 32, 11, 2
200
Li Lithium :
number of electron by energy levels 2, 1
167Ti Titanium :
number of electron by energy levels 2, 8, 10, 2
176Nb Niobium :
number of electron by energy levels 2, 8, 18, 12, 1
198W  Tungsten :
number of electron by energy levels 2, 8, 18, 32, 12, 2
193
Be Beryllium :
number of electron by energy levels 2, 2
112V  Vanadium :
number of electron by energy levels 2, 8, 11, 2
171Mo Molybdenum :
number of electron by energy levels 2, 8, 18, 13, 1
190Re Rhenium :
number of electron by energy levels 2, 8, 18, 32, 13, 2
188
B  Boron :
number of electron by energy levels 2, 2
87Cr Chromium :
number of electron by energy levels 2, 8, 13, 1
166Tc Technetium :
number of electron by energy levels 2, 8, 18, 13, 2
183Os Osmium :
number of electron by energy levels 2, 8, 18, 32, 14, 2
185
C  Carbon :
number of electron by energy levels 2 ,4
67Mn Manganese :
number of electron by energy levels 2, 8, 13, 2
161Ru Ruthenium :
number of electron by energy levels 2, 8, 18, 15, 1
178Ir Iridium :
number of electron by energy levels 2, 8, 18, 32, 15, 2
180
N  Nitrogen :
number of electron by energy levels 2, 5
56Fe Iron :
number of electron by energy levels 2, 8, 14, 2
156Rh Rhodium :
number of electron by energy levels 2, 8, 18, 16, 1
173Pt Platinium :
number of electron by energy levels 2, 8, 18, 32, 17, 1
177
O  Oxygen :
number of electron by energy levels 2, 6
48Co Cobalt :
number of electron by energy levels 2, 8, 15, 2
152Pd Palladium :
number of electron by energy levels 2, 8, 18, 18
169Au Gold :
number of electron by energy levels 2, 8, 18, 32, 18, 1
174
F  Fluorine :
number of electron by energy levels 2, 7
42Ni Nickel :
number of electron by energy levels 2, 8, 16, 2 or 2, 8, 17, 1
149Ag Silver :
number of electron by energy levels 2, 8, 18, 18, 1
165Hg Mercury :
number of electron by energy levels 2, 8, 18, 32, 18, 2
171
Ne Neon :
number of electron by energy levels 2, 8
38Cu Copper :
number of electron by energy levels 2, 8, 18, 1
145Cd Cadmium :
number of electron by energy levels 2, 8, 18, 18, 2
161TL Thallium :
number of electron by energy levels 2, 8, 18, 32, 18, 3
156
Na Sodium :
number of electron by energy levels 2, 8, 1
190Zn Zinc :
number of electron by energy levels 2, 8, 18, 2
142In Indium :
number of electron by energy levels 2, 8, 18, 18, 3
156Pb Lead :
number of electron by energy levels 2, 8, 18, 32, 18, 4
154
Mg Magnesium :
number of electron by energy levels 2, 8, 2
145Ga Gallium :
number of electron by energy levels 2, 8, 18, 3
136Sn Tin :
number of electron by energy levels 2, 8, 18, 18, 4
145Bi Bismuth :
number of electron by energy levels 2, 8, 18, 32, 18, 5
143
Al Aluminium :
number of electron by energy levels 2, 8, 3
118Ge Germanium :
number of electron by energy levels 2, 8, 18, 4
125Sb Antimony :
number of electron by energy levels 2, 8, 18, 18, 5
133Po Polonium :
number of electron by energy levels 2, 8, 18, 32, 18, 6
135
Si Silicon :
number of electron by energy levels 2, 8, 4
111As Arsenic :
number of electron by energy levels 2, 8, 18, 5
114Te Tellurium :
number of electron by energy levels 2, 8, 18, 18, 6
123At Astatine :
number of electron by energy levels 2, 8, 18, 32, 18, 7
127
P  Phosphorus :
number of electron by energy levels 2, 8, 5
98Se Selenium :
number of electron by energy levels 2, 8, 18, 6
103I  Iodine :
number of electron by energy levels 2, 8, 18, 18, 7
115Rn Radon :
number of electron by energy levels 2, 8, 18, 32, 18, 8
120
S  Sulfur :
number of electron by energy levels 2, 8, 6
88Br Bromine :
number of electron by energy levels 2, 8, 18, 7
94Xe Xenon :
number of electron by energy levels 2, 8, 18, 18, 8
108  
Cl Clorine :
number of electron by energy levels 2, 8, 7
79Kr Krypton :
number of electron by energy levels 2, 8, 18, 8
88Cs Caesium :
number of electron by energy levels 2, 8, 18, 18, 8, 1
298  
Ar Argon :
number of electron by energy levels 2, 8, 8
71Rb Rubidium :
number of electron by energy levels 2, 8, 18, 8, 1
265Ba Barium :
number of electron by energy levels 2, 8, 18, 18, 8, 2
253  
K  Potassium :
number of electron by energy levels 2, 8, 8, 1
243Sr Strontium :
number of electron by energy levels 2, 8, 18, 8, 2
219Lu Lutetium :
number of electron by energy levels 2, 8, 18, 32, 9, 2
217  

Articles on the same theme

The Pentaquark: A New Piece of the Cosmic Puzzle! The Pentaquark: A New Piece of the Cosmic Puzzle!
Why are Rare Gases rare? Why are Rare Gases rare?
Brownian Motion: A Link Between Two Worlds Brownian Motion: A Link Between Two Worlds
The 4 Articles of Albert Einstein from 1905 The 4 Articles of Albert Einstein from 1905
Why does nuclear fusion require so much energy? Why does nuclear fusion require so much energy?
Feynman diagrams and particle physics Feynman diagrams and particle physics
The nuclear instability barrier Stars cannot create elements heavier than iron because of the nuclear instability barrier
What is β radioactivity? What is β radioactivity?
Planck wall theory Planck wall theory
Is emptiness really empty? Is emptiness really empty?
The Large Hadron Collider The Large Hadron Collider
The hadron is not a fixed object The hadron is not a fixed object
Radioactivity, natural and artificial Radioactivity, natural and artificial
The scale of nanoparticles The scale of nanoparticles
Schrodinger's Cat Schrodinger's Cat
Before the big bang the multiverse Before the big bang the multiverse
Eternal inflation Eternal inflation
Gravitational waves Gravitational waves
What is a wave? What is a wave?
The fields of reality: what is a field? The fields of reality: what is a field?
Space in time Space in time
Quantum computers Quantum computers
Bose-Einstein condensate Bose-Einstein condensate
Equation of Newton's three laws Equation of Newton's three laws
Field concept in physics Field concept in physics
The electron, a kind of electrical point The electron, a kind of electrical point
Entropy and disorder Entropy and disorder
Light, all the light of the spectrum Light, all the light of the spectrum
The infernal journey of the photon The infernal journey of the photon
Mystery of the Big Bang, the problem of the horizon Mystery of the Big Bang, the problem of the horizon
The neutrino and beta radioactivity The neutrino and beta radioactivity
Einstein's space time Einstein's space time
The incredible precision of the second The incredible precision of the second
Why does physics have constants? Why does physics have constants?
Spectroscopy, an inexhaustible source of information Spectroscopy, an inexhaustible source of information
Abundance of chemical elements in the universe Abundance of chemical elements in the universe
The size of atoms The size of atoms
The magnetic order and magnetization The magnetic order and magnetization
The quark confinement The quark confinement
Superpositions of quantum states Superpositions of quantum states
Alpha decay (α) Alpha decay (α)
Electromagnetic induction equation Electromagnetic induction equation
Nuclear fusion, natural energy source Nuclear fusion, natural energy source
Does dark matter exist? Does dark matter exist?
Non-baryonic matter Non-baryonic matter
From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models From the Ancient Atom to the Modern Atom: An Exploration of Atomic Models
The mystery of matter, where mass comes from The mystery of matter, where mass comes from
Nuclear energy and uranium Nuclear energy and uranium
The Universe of X-rays The Universe of X-rays
How many photons to heat a coffee? How many photons to heat a coffee?
Seeing Atoms: An Exploration of Atomic Structure Seeing Atoms: An Exploration of Atomic Structure
Quantum tunneling of quantum mechanics Quantum tunneling of quantum mechanics
Entropy: What is Time? Entropy: What is Time?
The 12 particles of matter The 12 particles of matter
The Atomic Orbital: Image of the Atom The Atomic Orbital: Image of the Atom
Earth's radioactivity Earth's radioactivity
The vacuum has considerable energy The vacuum has considerable energy
The valley of stability of atomic nuclei The valley of stability of atomic nuclei
Antimatter and antiparticle Antimatter and antiparticle
What is an electric charge? What is an electric charge?
Our matter is not quantum! Our matter is not quantum!
Why use hydrogen in the fuel cell? Why use hydrogen in the fuel cell?
The secrets of gravity The secrets of gravity
E=mc2 explains the mass of the proton E=mc2 explains the mass of the proton
Image of gravity since Albert Einstein Image of gravity since Albert Einstein
Einstein's miraculous year: 1905 Einstein's miraculous year: 1905
What does the equation E=mc2 really mean? What does the equation E=mc2 really mean?
Special relativity and space and time Special relativity and space and time
Between Waves and Particles: The Mystery of DualityBetween Waves and Particles: The Mystery of Duality

1997 © Astronoo.com − Astronomy, Astrophysics, Evolution and Ecology.
"The data available on this site may be used provided that the source is duly acknowledged."
Contact −  Legal mentions −  English Sitemap −  Full Sitemap −  How Google uses data