fr en es pt
Astronomy
Asteroids and Comets Black Holes Children Chemical Elements Constellations Earth Eclipses Environment Equations Evolution Exoplanets Galaxies Light Matter Moons Nebulas Planets and Dwarf Planets Probes and Telescopes Scientists Stars Sun Universe Volcanoes Zodiac New Articles Shorts Archives Glossary
RSS astronoo
Follow me on X
Follow me on Bluesky
Follow me on Pinterest
English
Français
Español
Português
 


Last updated February 21, 2025

urin Scale: A Classification System for Impact Risks

Torino Scale

Image description: The Torino Scale is a system for classifying the impact risks of asteroids and comets on Earth. It ranges from 0 (no risk) to 10 (certain collision with catastrophic effects). As shown in this simulated image, the asteroid 2011 MD (top right) passed inside the orbits of the 31 GPS satellites. Its distance from Earth was only 12,300 kilometers. Its trajectory was strongly curved by Earth's gravity and then it continued its journey around the Sun.

What is the Torino Scale?

The Torino Scale is a tool used by astronomers to assess the impact risks of asteroids and comets on Earth. It was created in 1999 by Professor Richard P. Binzel of the Massachusetts Institute of Technology (MIT) and is named after the Italian city of Turin, where it was first presented.

This scale ranges from 0 to 10, where 0 indicates no risk or negligible risk, and 10 represents a certain collision with catastrophic global consequences. The scale considers two main factors: the probability of impact and the kinetic energy of the object.

The Torino Scale is divided into categories

The Torino Scale is divided into four main categories:

Examples of Asteroids

Several asteroids have come close to Earth or are expected to do so in the future.

Monitoring and Prevention

Monitoring Near-Earth Objects (NEOs) is crucial for preventing impact risks. Programs like NASA's Near-Earth Object Program and the Spaceguard Survey continuously track these objects. In the event of a serious threat, space missions could be launched to deflect or destroy the object.

N.B.: The Torino Scale is an important communication tool for informing the public and decision-makers about the potential risks associated with asteroid impacts.

Articles on the same theme

Yarkovsky Effect on Asteroids Yarkovsky Effect on Asteroids
Arrokoth, the red snowman Arrokoth, the red snowman
The Kirkwood Gaps in the Main Asteroid Belt The Kirkwood Gaps in the Main Asteroid Belt
What is the asteroid belt? What is the asteroid belt?
The Great Comet of 1577 Shattered the Crystal Spheres The Great Comet of 1577 Shattered the Crystal Spheres
Asteroids, the threat to life Asteroids, the threat to life...
Meteorites, extraterrestrial objects Meteorites, extraterrestrial objects
Comet Hartley 2: The Icy Heart Scrutinized by Deep Impact Comet Hartley 2: The Icy Heart Scrutinized by Deep Impact
When Two Asteroids Collide: The Strange Case of P/2010 A2 When Two Asteroids Collide: The Strange Case of P/2010 A2
2005 YU55: The 400 m Asteroid that Grazed Earth 2005 YU55: The 400 m Asteroid that Grazed Earth
Asteroid Apophis: The Perfect Candidate for a Global Impact? Asteroid Apophis: The Perfect Candidate for a Global Impact?
The asteroid Vesta The asteroid Vesta
What is an asteroid? What is an asteroid?
2012 and Comet ISON: Between Promise of Brilliance and Disappointment 2012 and Comet ISON: Between Promise of Brilliance and Disappointment
Giants of the Asteroid Belt: Classification by Size Giants of the Asteroid Belt: Classification by Size
Impact craters on Earth Impact craters on Earth
Online Simulator: Orbits of Asteroids Online Simulator: Orbits of Asteroids
Online Simulator: Orbits of Near-Earth Asteroids Online Simulator: Orbits of Near-Earth Asteroids
Rosetta has a date with a comet Rosetta has a date with a comet
Near-Earth asteroids Near-Earth asteroids
Asteroid 2009 DD45 sends us a sign Asteroid 2009 DD45 sends us a sign
Strange Resemblance Between Comet Hartley 2 and Asteroid Itokawa Strange Resemblance Between Comet Hartley 2 and Asteroid Itokawa
Earth's Trojan Asteroids: Companions Sharing Our Orbit Earth's Trojan Asteroids: Companions Sharing Our Orbit
Turin Scale: A Classification of Impact Risks Turin Scale: A Classification of Impact Risks
The Nice Model: Towards an Explanation of the Late Heavy Bombardment The Nice Model: Towards an Explanation of the Late Heavy Bombardment
Once again we haven't seen it Once again we haven't seen it
Comet Lemmon 2013: A Celestial Visitor from the Southern Hemisphere Comet Lemmon 2013: A Celestial Visitor from the Southern Hemisphere
Asteroid 2012 DA14: Orbital Characteristics and Impact Risks Asteroid 2012 DA14 passed on February 15, 2013
Planetary defense with Didymos and Dimorphos Planetary defense with Didymos and Dimorphos
Lagrange points, L1 L2 L3 L4 L5 Lagrange points, L1 L2 L3 L4 L5
Chariklo and his two amazing rings Chariklo and his two amazing rings
Rosetta and Philae Rosetta and Philae
The Passage of Comets: Eccentric Orbits at the Heart of the Solar System The Passage of Comets: Eccentric Orbits at the Heart of the Solar System
Vesta and its Curiosities: The Enigma of the Torn South Pole Vesta and its Curiosities: The Enigma of the Torn South Pole
Near-Earth Asteroids: Mapping Celestial Threats Near-Earth Asteroids: Mapping Celestial Threats
Areas with asteroids and comets Areas with asteroids and comets
Orbits of Near-Earth Asteroids: When Asteroids Brush Past Earth Orbits of Near-Earth Asteroids: When Asteroids Brush Past Earth
Wandering comets Wandering comets
Asteroid Pallas: A Giant of the Main Belt Asteroid Pallas: A Giant of the Main Belt
Asteroid Juno: an unknown giant of the solar system Asteroid Juno: an unknown giant of the solar system
Ganymed (1036): Near-Earth and Mars-crosser Ganymed (1036): Near-Earth and Mars-crosser
Hell of the Hadean Hell of the Hadean
Are there natural satellites of natural satellites? Are there natural satellites of natural satellites?
Earth's quasi-satellite: 2016 HO3 Earth's quasi-satellite: 2016 HO3

1997 © Astronoo.com − Astronomy, Astrophysics, Evolution and Ecology.
"The data available on this site may be used provided that the source is duly acknowledged."
How Google uses data
Legal mentions
English Sitemap − Full Sitemap
Contact the author